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Abstract

Image enhancement is a fundamental problem in image processing, and deep learn-
ing based upsampling methods have evolved to be more effective than conventional
interpolation-based techniques[26]]. We used the original Super-Resolution Convo-
lution Neural Network (SRCNN)[3]] in PyTorch, with the aim of improving final
output quality by producing crisp edges. We implemented the perceptual Mean
Gradient Error (MGrE) loss function, using which we obtained a testing PSNR of
26.117 and training SSIM of 91.6%. We tested our model by adding noise and blur
to inputs, and found that the mixed loss model gives the most aesthetically pleasing
results, which we feel is as important as higher scores on conventional metrics. We
further implemented an auto-encoder architecture which harnesses the ability to
learn compressed representations of high-resolution training data and use the same
to reconstruct them. We were able to achieve an average testing PSNR of 26.05
with a max PSNR of 33 on DIV2K dataset using auto-encoders.

1 Introduction

Image quality plays an important role in human and machine perception of the objects present in
an imagel[5]. The quality of the image is important to perform computer vision tasks like object
detection[[7]], facial recognition [24], satellite[19] and medical imaging[l6] etc. Image ’quality’ is
mainly a factor of resolution, however attributes such as noise, blur etc also play a role.

The aim of single-image super-resolution (SISR) techniques is to obtain high-resolution (HR) with
better visual quality equivalents of low-resolution (LR) coarse-detailed images[26l]. Traditional
upsampling techniques have been used for some time, with the most common techniques involving
some kind of interpolation between the pixels, such as bilinear or bicubic sampling. These approaches
are fast and easy to implement, however their results have scope for improvement. As processing
became cheaper in the 2000’s, reconstruction based techniques were proposed[28]]. Firstly, there were
parametric models which analysed keypoints like edges[28]]. Later there were data-driven, patch-
based algorithms which analysed further details of the scene, like textures, or objects to upsample[28]].
The relatively new paradigm of deep learning based super resolution methods have recently evolved
to be more effective than conventional techniques[26]].

Images can have a smaller resolution due to degradation, such as blurring or noise addition, or because
of a small spatial resolution. This degradation can be thought of a function applied on the HR image
to obtain the LR image. Theoretically, it is possible to apply the inverse of the degradation function to
achieve the HR image, however estimating such a function is not a well posed problem, and therein
lies the challenge[26l]. Research in this field has increased since the proposal of the Super-Resolution
convolution Neural Network (SRCNN) in 2014 by Dong[3]] and his research team.

Researchers recently released a survey paper where they classified thirty contemporary convolution
Neural Network based super-resolution models into nine broad categories according to their salient
features[2]. The earliest models had simple linear designs with a single path for signal flow, which is
why they were an excellent choice for our group to experiment, code and learn to innovate upon. The



key difference between these linear architectures is that some perform upsampling early in the net
such as SRCNN[3]] and VDSR[11]], while other others do it later in the network, like FSRCNN[4]].

In our work, we refined the training and performance of SRCNN by combining MSE loss with Mean
Gradient Error (MGrE) perceptual loss[[13] during training. This new mixed loss training regime is
able to accurately preserve edges in the images, due to the use of the Sobel operator[22]]. Using 100
images of the Div2k dataset[1] for testing, we obtain an excellent score of about 27dB PSNR.

In addition to improving the SRCNN model, we have followed the auto-encoder architecture byMao
et al. [14], while fine tuning the same, to generate high quality high definition images from low-
resolution images. Auto-encoders have been proven to be effective in tasks like image denoising,
color restorations and image compression, while our experimentation show their ability to reconstruct
high quality images by achieving an average PSNR of 26.05 when tested with DIV2K dataset.

2 Literature Review

2.1 SRCNN and ’Early’ Upsampling Linear Networks

We first focussed on SRCNN which is the original Super Resolution convolution Neural Network|[3]].
It has three convolution and two Rectified Linear Unit (ReLU) layers for non-linearity. SRCNN
is the first successful attempt towards using convolution layers for super resolution. It consists of
convolution layers each followed by a non linearity unit. The first convolution layer does patch
extraction to create feature maps of the low-resolution input images. The second converts them
into high-dimensional feature vectors, and finally the last layer combines it all together to get the
high-resolution image. This linear design was the inspiration for later deep learning networks to solve
the problem of super resolution. The network uses pixel-wise MSE loss. However, as we will see,
using the MSE loss favours a higher PSNR, which is a metric used for ’quantitatively’ evaluating
restored image quality, but has little relation with the human perception of the image. For further
details about the SRCNN architecture, please refer to the original paper by Dong et al. [3]].

2.2 FSRCNN and ’Late’ Upsampling Linear Networks

Upsampling later can improve efficiency, and run-time speed, allowing real-time models for use on say
edge devices. Dong et al. [3]] followed up with Fast Super-Resolution convolution Neural Network
(FSRCNN) at ECCV 2016[4]]. Late upsampling designs unlike early upsampling designs aren’t
computationally expensive as early upsampling designs which upsample the LR image first before
learning hierarchial features. FSRCNN is basically SRCNN network designed for late upsampling
and ESPCN][20] is based on late upsampling improves computational speed and quality of the
output super resolution image than the earlier designs. Later network architectures, like VDSR|[/11]]
and DNCNN/[31]] were based on very deep convolution neural networks introduced to improve the
performance, but they rely heavily on the accuracy of the noise estimation.

2.3 Other network architectures

With the success of ResNet[8], people started applying skip-connections to the super-resolution
problem, which gave birth to Residual style networks [2] which learn the residue between the input
and ground truth images. They utilise skip connections to avoid vanishing gradient problem which
makes it feasible to design deep networks. These architectures were found to achieve better perfor-
mance compared to simpler networks like SRCNN][3]] and VDSR[11]. Then, Densely Connected
Networks[2]] we inspired from DenseNet[9], which achieve high flexibility and richer feature repre-
sentation by combining hierarchical cues. An example of this type of network is the SRDenseNet[23]].
Apart from these, multi-branch networks[2] obtain a diverse set of information at a number of differ-
ent context scales, with the extra information helping to obtain better HR reconstructions. While all
the these networks consider spatial locations and channels to obtain a uniform importance for the
super resolution, Attention-based networks[2] only selectively focusses to few features at a given
layer and thereby allowing flexibility for the model. Further, since it is not always feasible to assume
that the degradation will be bicubic as it is possible for multiple degradations to occur simultaneously,
therefore, networks like ZSSR[21]] (Zero-Shot Super Resolution) use multiple-degradation handling
approach in order to obtain a high-resolution image.



More recently, General Adversarial Networks or GANs have been applied to the super-resolution
problem[26]. They have two components, a generator and discriminator. The generator tries to create
Super Resolution images to trick the discriminator into believing that they are real high-resolution
images instead of being artificially generated, and training progresses in this game theoretic fashion
until the discriminative model can’t identify the difference between the model generated data and the
original data thus giving rise to the best parameters for getting a high-resolution image from a low-
resolution image. This approach has produced among the best results so far, and is the main direction
of future research in this field. Some examples of important GAN models for super resolution tasks
include SRGAN[12], ESRGAN][25]] and SRFeat[15].

2.4 Auto-encoders

An auto-encoder is an encoding-decoding framework with symmetric convolution-deconvolution
layers which learn end-to-end mappings from low-resolution images to high-resolution Images. This
framework can be trained to learn compressed representations from LR image. These representations
can be used to retain the most important information from input images and use them to completely
reconstruct the image in higher resolution.

A very deep fully convolution auto-encoder network for image restoration was proposed by Mao
et al. [14], where they used their architecture to accurately perform tasks like image denoising,
super resolution removal of JPEG compression artefacts, non-blind image deblurring and image
recolorisation.

The architecture of an auto-encoder consists of three parts, encoder, bottleneck and decoder. In our
research we construct an auto-encoder model by only using convolution layers. The encoder consists
of stacked convolution layers and thus act as a feature extractor. It aims to learn and preserve primary
components of low-resolution images meanwhile eliminating corruptions in the image. Whereas the
decoder consists of stacks deconvolution layers which thus are responsible for recovering a clean
image from inputs while increasing its resolution.

Auto-encoders provide the ability to represent high- resolution feature maps in compressed repre-
sentations which can be accessed through the bottleneck layer. These feature maps consist of all the
necessary information that is required to reconstruct a sharper and upsampled image. Refer to the
appendix for the architecture of the auto-encoder.

Different variants of auto-encoders like variational auto-encoders [[14] and coupled deep auto-encoders
[30] have been implemented in research for the task of super resolution to get superior effectiveness
and efficiency. Though these models have only been trained and tested on standard resolution datasets
like Set5, Set14, BSD100 and Cifar-10. In order to understand the effectiveness of auto-encoders
on high definition high-resolution images, we have implemented a deep convolution auto-encoder
framework which is trained and tested on DIV2K dataset.

2.5 Mean Gradient Error (MGrE) and losses for Super resolution

The MSE loss (L2) function is commonly used for SISR networks. It compares the ground truth
image with model output HR image pixel by pixel, hence is a pixel-wise loss. However, the capability
of MSE loss to record for the ‘perceptually’ relevant differences that humans can distinguish is low.
To account for these, many novel perceptual losses have been proposed for the SISR problem, such as
by Wu et al. [27]. This class of loss functions compare some high level features between the ground
truth image with model output HR image.

For example, in the SRGAN[12] model, a multi task loss is used which consists of three parts
namely an MSE loss for pixel-wise similarity, a perceptual similarity metric expressed in terms of
distance, and an adversarial loss for the discriminator and generator. This model is then directly
checked by the humans and they give a mean opinion score depending on the quality of the output
image. EnhanceNet[18] is able to create good textures in the output super resolution image by
using perceptual and texture matching losses besides the regular MSE loss. SRFeat[15]] is another
GAN model which focuses on the realistic perception of the input image, which is done by using an
additional discriminator for assisting the generator to generate high-frequency structural features.

We chose to implement the Mean Gradient Error (MGrE) loss function use by Lu and Chen [13] for
their modified U-Net SISR model. The MGrE function measures the difference between the edges



present in the two images. It does this by utilising a Sobel edge detection filter to get the gradients
of the images, and then calculating the mean square error between the pixel-wise gradients. We use
this in conjunction with the MSE loss. In the equation below, (i,j) is the pixel coordinate, G is the
gradient for the HR ground truth image and G is the gradient for the HR output image, and m and n
are the height and width of the images.

2.6 Peak Signal-to-Noise Ratio (PSNR) :

It is the ratio between the maximum power of a signal and the power of the corrupting noise that
affects the fidelity of its representation. It is usually expressed in therms of the logarithmic decibel
scale. The M AX here is the maximum possible pixel value of the image.

PSNR = 10LOGo(MAX2)

But a major drawback of PSNR is that it is the estimate of an absolute error and doesn’t exactly have
a relation to image quality. A higher PSNR means that more noise has been removed from an image,
and is thus more biased towards over smoothed or blurry results. An algorithm which removes noise
at the cost of textures in the image will still have a high PSNR. A better evaluation metric is thus the
Structural Similarity Index Measure or SSIM, which accounts for the structure of the image.

2.7 Structural Similarity Index Measure (SSIM) :

It utilises a perception-based model that incorporates things like contrast ratio and luminosity and
other factors, and is more closely related to what humans would perceive in image quality of an
image. It is calculated relative to the high-resolution ground truth image, so a value of one means that
the output is identical to the ground truth. To achieve a high SSIM measure, an algorithm needs to
denoise while preserving the edges and other textual structure like edges of objects in an image.

3 Methodology

Our aim to is conduct a study into the improvement of the SRCNN model trained with the MGrE
loss, and demonstrate the new models’ effectiveness in 2x SISR tasks. We further wish to learn and
demonstrate the effectiveness of auto-encoder training for SISR.

3.1 Datasets and Pipeline:

In order to compare results with Dong et al. [3]], we used the same dataset used by them for originally
training their model. It consists of 91 images taken from the ILSVRC 2013 Imagenet detection
training dataset[[17], which is decomposed into 24,800 subimages obtained by striding the originals
with a factor of 14. For testing, we used 100 images from the DIV2K]1]] dataset. Further, in order
to train on 800 high definition high-resolution images of the full DIV2K dataset, we used the auto-
encoder architecture due to its ability to generate compressed representations of these images. These
images were first resized to a resolution of 512x512 and then further downsampled by a factor of 2 to
generate low-resolution images as inputs.

Our experimentation pipeline for both the models proceeded as follows:

Make the experimental change in the model, if any

Obtain LR input image from HR ground-truth by downsampling

Feed LR image through network to get HR output

Compare the HR output with HR ground-truth by calculating SSIM and PSNR
Do same for all images in the dataset, to find average SSIM and PSNR.

Nk W=



3.2 Implementation Notes:

For the basic SRCNN structure and training, we followed a tutorial[16]. We implemented our
own Mean Gradient Error function, as seen in Appendix in fig[0] We used the author’s original
recommended kernel sizes of 9 -> 1 -> 5. This is the first model we trained. In the original paper, a
simple MSE loss is minimised using Stochastic Gradient Descent with standard backpropogation,
however used a modern Adam [[10] algorithm for better optimisation, with a learning rate of 1e~*.
Adam is used because it provides several improvements over the SGD, and is widely considered
by the neural network academia to be a better optimizer than SGD. A batch size of 32 was used
throughout experiments.

We also trained an SRCNN model with a mixed loss, using the MSE as the pixel loss, and the MGrE
for the perceptual loss. The MGrE is weighted with a factor lambda, that we kept at 0.1 like the
original author’s suggestion[13]].

TotalLoss = MSE +0.1x MGrE

For training the auto-encoder architecture we implemented the architecture proposed by Mao et al.
[14]. The architecture was further fine tuned in order to extract appropriate high-resolution feature
maps from input images. Our auto-encoder architecture consist of three symmetric convolution and
deconvolution layers of kernel sizes 3, where downsampling operations are implemented after each
layer in encoders while upsampling operation is done after each layer in decoders. Unlike the original
proposed architecture, our model consists of an additional convolution and deconvolution layer in
order to capture high level feature representations from images. Each layer is further followed by a
rectified linear unit activation function along with L1 regularization with a regularization factor of
10e-10. This model uses the adam optimizer, same as our SRCNN model, while only using MSE in
order to calculate the pixel loss. A batch size of 148 images was used where the input images were
further divided into training and validation sets using splitting of 0.15.

4 Experimental Results And Discussion

4.1 Non-neural baseline results

For a baseline comparison, we used bilinear and bicubic upsampling. We used the OpenCV build-in
functions, and tested on 100 pictures from the Div2k dataset. Two pictures are shown in appendix
figure [T4] with these classical types of upsampling.

4.2 Normal SRCNN Training and Testing

The first SRCNN model we trained was using the standard MSE loss. Training for 100 epochs on a
single 2080Ti card on the server gave a final training loss of 5.3¢~°, testing PSNR of 26.466, and test
SSIM: 0.304. The graph during training of these vs epochs is shown in appendix figure[7] We will
now try to improve upon this result by training with both MSE and MGrE loss.

Training PSNR over time: With MGrE Training SSIM over time: With MGrE Training Loss over time: With MGrE

— Training PSNR (d8) — Training SSIM (%) — Training loss

PSNR (dB)
Structural Similarity Index Measure
Loss

Epochs h . : Eﬁnch number ) h ’ Epochs

Figure 1: Training Results With MGrE

4.3 SRCNN with MGrE loss

The implemented mean gradient error function was used with MSE loss. The weight hyperparameter
was kept at 0.1. The new training was visualised in the following plot{I] This resulted in a testing



PSNR: 26.117 and test SSIM: 0.307. There’s a clear improvement in the quality of images and SSIM
values, as seen in figure. We can see that training progressed smoothly. We can see also the effect of
the sobel operation in the encircled sections. The edges are more sharp in the left exhibit that is with
the MGrE, and we can see the effect of super resolution on the contours. There is less contrast or
dullness in the image without the MGtE loss.

a) With MGrE b) Without MGrE

Figure 2: SRCNN Results

4.4 Testing with Noise

We tested both of our models with Gaussian noise on LR input images. Some results can be seen in
figure[3] We find that the model with MGtE is able to provide more crispier images than the model
without MGrE, even in the presence of noise. Larger versions of these images can be viewed in the

appendix in figures [I2]and [13]

¢) Output Without Using MGrE d) Output Using MGIE ©) Output Without Using MGrE d) Output Using MGrE

Figure 3: Testing With Noise

4.5 Testing with Blur

We also tested our models with Gaussian blur on LR input images. Some results can be seen in figure
[] Extra blur can be thought of as an even lower resolution image. With this added, we find that the



model with MGrE gives more accurate images to the ground truth, than the model without MGrE.
Further examples can bee seen in appendix in figures [TT]and [I0}

a) Ground Truth b) Ground Truth with Blur
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Figure 4: Testing With Blur
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Figure 5: Training Loss - Autoencoders

Output Image High-Res Label Image

Output Image High-Res Label Image

Figure 6: Results of auto-encoder



4.6 Auto-encoder Training and Testing

Several architectural experimentations were performed in order to determine the best performing
model for training DIV2K images. The model that gave the best result consists of stacks of 3
convolution and deconvolution layers with kernel sizes of 3. The low-resolution input images were
downsampled by 2D max pooling layers placed between encoder layers leading to a compressed
encoded image at the end of the encoder. The encoded images were then passed through the decoder
layers consisting of 2D upsampling layers between deconvolution layers in order to reconstruct
high-resolution outputs. In order to gain the ability of making the model deeper without losing
training accuracy due to issues like vanishing gradients, we used skip connections that connect the
symmetric convolution-deconvolution layers. Since auto-encoders are prone to overfitting as the dept
increases, we used dropout layers having the ability to drop 0.3 input units of convolution layers,
thus helping us generalize the model. The model was trained for 100 epochs using 2080Ti GPU,
where an average PSNR of 26.046406 was achieved accross the DIV2K testset. The final training
loss was recorded at 0.0059 while the final validation loss was recorded as 0.0052. The graph of loss
vs epochs is shown in figure[5]

The initial experimentation was implemented with stacks of 2 convolution and deconvolution layers
with kernel sizes of 3. This model was able to achieve an average PSNR of 24.92268. Upon
visualization of encoded images we were able to determine that high level features of the image not
being extracted. We performed further modifications to the convolution layers adding a convolution
and deconvolution layer to the framework while implementing kernel filter sizes of 9 -> 3 -> 5. This
framework performed very well for some input images as we were able to record max PSNR of
33. On the other hand, some test images were performing very poorly and thus the min PSNR was
observed at 16. As a result, the mean PSNR across the DIV2K testset was computed as 25.15. Several
other experimentation were performed that proved ineffective, including data augmentation in order
to provide model with inputs of varying brightness and zoom, use of smoothed L1 loss and use of
Adadelta optimizer[29].

5 Conclusion and Future Work

The aim of this project was to learn and develop an understanding of advanced computer vision via
programming in a deep learning framework like pytorch and keras as well as to further enhance our
knowledge in the domain of super resolution. We were able to improve the standard SRCNN model
by training with the MGrE loss, and demonstrated its effectiveness in 2x SISR tasks as well as in the
presence of noise and blur.

Secondly, use of auto-encoders for the task of super resolution yielded accurate results. We were
able to observe outputs with max PSNR of 33 during experimentation, which are on par with other
state-of-art models. Due to constraint of time and computation ability, we were unable to make our
model robust which leaves us with a huge scope for optimization of the same in the future. The higher
PSNR values were observed when convolution and deconvolution layers were implemented using
larger kernel sizes.

The main limitation of our work is that there are other contemporary methods which can achieve
similar level of results as us. As we described in section:Section 2.6l most GANs and modern SISR
architectures already utilise some kind of perceptual loss, as well as other modifications. Future work
involves checking the performance of the model using different data augmentation techniques(like
random cropping or flipping) on a much larger and more generalisable data set. For example, we
could train with some noisy and blurry images to increase robustness of the network. Testing with
different hyper parameters such as learning rate and the MGRE loss regularisation parameter. For
example, as we know that perceptual loss is important we could try with higher weightage for the
MGEtE loss, such as 0.15, 0.2 and 0.25. We can implement the same loss function in FSRCNN and
other networks and check the performance of the baselines. We would also like to experiment with
3x, 4x and other magnification factors. If time permitted, we would have tried residual learning or
perhaps a U-Net style architecture. Another direction would be to use a relevant pre-trained backbone
and build our own model from scratch. In future, we could also implement a perceptual loss for
auto-encoders and observe the new results.
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Figure 9: MGrE Code
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Figure 10: Blur image output with MGrE
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Figure 11: Blur image output without MGrE
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Figure 12: Noisy image output with MGrE
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Figure 13: Noisy image output without MGrE
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Figure 14: Baseline- Upsampling with Linear and Bicubic Interpolation
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